THERMAL CONDUCTIVITY OF SUCCINIC ACID ESTERS IN WIDE TEMPERATURE AND PRESSURE RANGES

R. A. Mustafaev and R. S. Ragimov

UDC 536.2

Results of experimental investigation of the thermal conductivity of succinic acid esters in a wide range of the parameters of state are reported. Equations are derived which describe well the experimental results.

Succinic acid esters find wide application in the chemical and petrochemical industries, power generation, medicine, etc. Some of these esters, having a high boiling point (about 500 K), can be successfully used as heat carriers and cooling liquids. Nevertheless, data on their thermophysical properties are almost absent in the literature.

The present work, being a continuation of previous investigations [1-7], is devoted to experimental investigation of the thermal conductivity λ of succinic acid esters (diethyl, dipropyl, and dinonyl); the substances were chemically pure, and chromatographic analysis showed no less than 99.30% of the basic substance. Characteristics of the investigated esters are given in Table 1.

Investigations were carried out at temperatures from room temperature to 575 K and at pressures to 60 MPa. The method, measurement procedure, and design of the device are described in detail in [8-10].

The basic unit of the device is a cylindrical bicalorimeter consisting of two coaxial cylinders. The gap between the cylinders is filled with the investigated liquid. Experimental determination of thermal conductivity involves measurement of the time lag of the core temperature relative to the temperature of the unit. Measurements were made at different heating rates, which allowed the temperature drop in the liquid to be varied within the limits of 3-8 K. The absence of convection was checked by measurements at different heating rates. In calculating thermal conductivity, all corrections inherent in the method were made [10]. A correction for radiation was not introduced, because of the absence of data on absorption spectra of the investigated substances. The maximum relative error of measurement was estimated as $\pm 2.2\%$. The reproducibility of the experimental data obtained at the same parameters of state was within $\pm 1\%$.

Table 2 gives smoothed values of thermal conductivity of the investigated esters.

For each liquid we recorded seven isobars between atmospheric pressure and 60 MPa. Measurements were made at approximately 12 K intervals.

Experimental values were obtained by averaging several measurements in the same regime. The internal consistency of the results obtained was checked by constructing isobars and isotherms of the thermal conductivities of the substances.

Figure 1 shows isobars and isotherms of the thermal conductivity of diethyl ester. Other esters have isobars and isotherms of thermal conductivity of a similar form.

Unfortunately, at present, despite substantial development of the theory of liquids, we have no reliable methods for calculation and prediction of the thermophysical properties of substances, especially of complex substances, polar compounds, and our investigated esters.

Therefore, the development of methods of calculation of thermophysical properties of poorly known substances is still urgent, since the amount of applied liquid organic compounds is still ahead of the volume of experimental studies, and this trend will apparently not change in the future. Moreover, the ranges of temperatures

Azerbaijan Technical University, Baku, Azerbaijan. Translated from Inzheenrno-Fizicheskii Zhurnal, Vol. 69, No. 5, pp. 811-815, September-October, 1996. Original article submitted December 29, 1994.

TABLE 1. Characteristics of the Investigated Esters

Ester	Formula	М	Т _b , К	ρ , kg/m ³	Purity with respect to mass, %
Diethyl	C ₁₈ H ₁₄ O ₄	174.20	490.85	1037.0	99.53
Dipropyl	$C_{10}H_{18}O_{4}$	202.25	523.95	999.3	99.62
Dinonyl	C ₂₂ H ₄₂ O ₄	370.58	723.15	910.0	99.37

TABLE 2. Smoothed Values of the Thermal Conductivity $\lambda \cdot 10^3$ (W/m·K) of Succinic Acid Esters as a Function of Temperature and Pressure

Т, К	P, MPa							
	0.1	10	20	30	40	50	60	
	Diethyl ester							
298.15	159	164	170	175	183	187	192	
323.15	155	150	166	171	177	183	188	
348.15	151	156	162	168	173	178	184	
373.15	147	153	159	154	169	175	180	
398.15	143	149	154	160	165	171	176	
423.15	139	144	150	156	161	167	173	
448.15	136	141	147	152	157	163	169	
473.15	132	138	143	148	154	159	166	
498.15		134	140	145	150	157	162	
523.15		131	136	142	147	153	159	
548.15	-	126	133	139	145	151	157	
573.15	-	124	130	137	143	149	155	
Dipropyl ester								
298.15	155	162	167	173	178	183	190	
323.15	151	158	164	170	175	180	185	
348.15	148	154	160	166	172	176	182	
373.15	144	151	157	162	168	173	179	
398.15	141	147	153	159	164	170	175	
423.15	137	143	149	155	160	166	172	
448.15	133	140	146	150	157	163	168	
473.15	130	136	142	148	153	159	165	
498.15	125	132	138	145	150	156	162	
523.15	-	129	136	140	147	153	159	
573.15	-	124	132	138	144	151	157	
548.15	-	120	128	135	142	148	155	
			Dinony	/l ester			100	
298.15	157	161	165	169	174	177	182	
323.15	153	157	161	165	170	174	179	
348.15	149	153	158	162	166	171	1/0	
373.15	145	150	154	159	163	108	1/3	
398.15	141	146	151	156	101	105	1/0	
423.15	138	143	148	153	158	103		
448.15	135	139	144	150	155	101	103	
473.15	132	136	141	147	152	15/	103	
498.15	1 129	134	138	144	149	155	100	
523.15	126	131	136	141	14/	152	138	
548.15	123	128	134	139	145	151	150	
573.15	120	126	132	138	143	150	154	

ТК	$\lambda \sigma^{0.0625} \cdot 10^3$ for Esters					
.,	diethyl	dipropyl	dinonyl			
298.15	134	134				
323.15	130	130	128			
348.15	126	126	125			
373.15	122	122	122			
398.15	118	117	119			
423.15	115	115	116			
448.15	112	113	113			
473.15	110	109	110			
498.15	-	106	107			
523.15	-	-	104			
548.15	-	-	102			
573.15	_	-	100			

TABLE 3. $\lambda \phi^{0.0625}$ of the Investigated Esters as a Function of Temperature

Fig. 1. Isobars and isotherms of the thermal conductivity of diethyl ester. λ , W/m·K; P, MPa; T, K.

and pressures in which substances are used broaden steadily. These factors stimulate interest in prediction of the thermophysical properties of substances that are either almost uninvestigated or investigated in a limited range of the parameter of state.

An analysis of experimental results for the temperature dependence $\lambda = f(T)$ at atmospheric pressure has revealed that at the same temperatures for all the investigated esters the following condition is fulfilled:

$$\lambda \sigma^{0.0625} = \text{idem} , \qquad (1)$$

where $\Phi = n_C/M$; $n_C =$ is the number of carbon atoms in a molecule; M is the molecular mass.

Table 3 illustrates to what extent condition (1) is satisfied.

From (1) it follows that for two representatives of the given homologous series the relation

$$\frac{\lambda_1}{\lambda_2} = \left(\frac{\Phi_2}{\Phi_1}\right)^{0.0625},\tag{2}$$

holds where λ_1 is the thermal conductivity of homolog 1 and λ_2 is that of homolog 2.

Fig. 2. Temperature dependence of $\lambda \sqrt[5]{n_C}$ for succinic acid esters at different pressures: 1) diethyl ester; 2) dipropyl ester; 3) dinonyl ester.

For a given liquid Φ is a constant and formula (2) allows calculation of thermal conductivity of all terms in the given homologous series by using the thermal conductivity of one homolog.

Condition (1) made it possible to establish the following generalized relation for $\lambda = f(T)$:

$$\lambda = \frac{(1675 - 1.2T)}{\left(\frac{n_{\rm C}}{M}\right)^{0.0625}} \cdot 10^{-4} \,. \tag{3}$$

Relating λ to the molecular mass *M* and the number of carbon atoms $n_{\rm C}$, the formula obtained describes the temperature dependence of λ sufficiently exactly at temperatures of from 298.15 K to the boiling point $T_{\rm b}$ of the liquid. A comparison of the experimental data with those calculated by formula (3) has shown that their deviation does not exceed $\pm 2\%$.

Analyzing the experimental data obtained at high parameters of state, we have found that the isobars in the coordinates $\lambda \sqrt[5]{n_c} = f(T_b - T)$ are of a universal character and represent straight lines. Thus, for each isobar at temperatures equidistant from the normal boiling point T_b of the liquid, i.e., at equal $T_b - T$, the following relation holds:

$$\lambda \sqrt[5]{n_{\rm C}} = \rm idem \,. \tag{4}$$

From (4) it follows that for two representatives of the homologous series $T_b - T_1 = T_b - T_2$ the relation

$$\frac{\lambda_1}{\lambda_2} = \sqrt[5]{\left(\frac{n_C^2}{n_C}\right)}.$$
(5)

is valid.

Formula (5) allows calculation of the thermal conductivity of all terms entering this homologous series by the thermal conductivity of one of the homologs and the number of carbon atoms in a molecule.

Fig. 3. Coefficients A and B vs pressure.

Figure 2 shows the results of processing of experimental data for the investigated esters in the coordinates $\lambda \sqrt[5]{n_c} = f(T_b - T)$. As is seen, the experimental points for all the investigated esters in the above coordinates fall on a straight line that can be described by the equation

$$\lambda (P, T) = \frac{1}{\sqrt[5]{n_{\rm C}}} \left[A + B \left(T_{\rm b} - T \right) \right], \tag{6}$$

where the coefficients A and B are universal, depending on the pressure.

The dependences A(P) and B(P) are also linear and respesented in Fig. 3.

Computer-aided processing of the plots by the least-squares method has allowed us to determine A(P) and B(P) and represent Eq. (6) finally in the following form

$$\lambda = \frac{1}{\sqrt[5]{n_{\rm C}}} \left[1920 + 10P + (2.3 - 0.007P) \left(T_{\rm b} - T \right) \right] \cdot 10^{-4} \,. \tag{7}$$

Formula (7) is a generalized relation that contains no quantities to be determined in additional experiments and allows direct calculation of the thermal conductivity of the esters of the investigated homologous series in wide ranges of temperatures and pressures. Deviation of the calculated from experimental λ values does not exceed $\pm 2\%$.

Using this equation, one can calculate $\lambda = f(P, T)$ of unstudied esters from the given homologous series without performing laborious and expensive experiments.

REFERENCES

- 1. R. A. Mustafaev and B. G. Garadzhaev, Inzh.-Fiz. Zh., 49, No. 2, 282-284 (1985).
- 2. R. A. Mustafaev and D. K. Ganiev, Teplofiz. Vys. Temp., 19, No. 4, 885-887 (1986).
- 3. R. A. Mustafaev and M. K. Guseinov, Inzh.-Fiz. Zh., 57, No. 2, 299-301 (1989).
- 4. R. A. Mustafaev, D. K. Ganiev, and R. S. Ragimov, Inzh.-Fiz. Zh., 59, No. 2, 259-261 (1980).
- 5. R. A. Mustafaev, S. I. Tagiev, and T. A. Stepanova, Teplofiz. Vys. Temp., 28, No. 3, 575 (1990).
- 6. R. A. Mustafaev, D. K. Ganiev, and R. S. Ragimov, Izv. VUZov, Neft Gaz, No. 2, 57-59 (1991).
- 7. R. A. Mustafaev, D. K. Ganiev, R. S. Ragimov, and N. M. Bairamov, Izv. VUZov, Neft Gaz, No. 5, 66-67 (1991).
- 8. R. A. Mustafaev and E. S. Platunov, Teplofiz. Vys. Temp., 10, No. 3, 615-621 (1972).
- 9. R. A. Mustafaev, Inzh.-Fiz. Zh., 32, No. 5, 825-834 (1972).
- R. A Mustafaev, Thermophysical Properties of Hydrocarbons at the High Parameters of State [in Russian], Moscow (1991).